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Part I

General equations are presented for a method of calculating the net rate of production and the
fractional mass-flow rate for each species without introducing the kinetic steady-state approximation.
Mathematical problems of smoothness and stability which must be surmounted in any method
which avoids the kinetic steady-state approximation are discussed in § 3. To facilitate applications,
§ 4 and Appendix C give the equations in a form and notation which singles out convenient calcula-
tional units and has been found to be adapted to the study of one-dimensional time-independent
real flames. The checks used to test the validity of the results are summarized. Section 6 shows that
the method’s major disadvantage lies in the use of a more complex system of equations, while its
major advantages are: (@) it reduces the number of differential equations and thereby simplifies
the eigenvalue character of the problem; () in contrast to the conventional steady-state approxi-
mation, it is consistent in a sense which § 2 shows is required in problems of practical interest. Thus
it avoids the most serious inadequacy of the conventional kinetic steady-state approximation: the
failure to include the fractional mass flow for an intermediate species.

Part 11

Various methods were applied to numerous numerical integrations of the hydrodynamic
equations for a one-dimensional time-independent flame with idealized kinetics and transport
properties. The method developed in part I proved to be very convenient for sets of parameters
which do not lead to too great deviations from the kinetic steady state.

Part II is devoted to an analysis of these results to study: (2) how the kinetic model and the
kinetic and transport parameters affect the properties of free-radical flames; () various assump-
tions and approximations which have been used in flame theories. The parameter variations were
chosen to test the significance of the assumption of unit Lewis numbers and the use of the kinetic
steady-state approximation.

To clarify the relation between these results and the behaviour of other systems, the significant
aspects of the model are summarized and the equations are cast in suitable dimensionless forms
which are used in interpreting numerical results. The total mass-flow rate appears in a dimension-
less eigenvalue which is shown to be comparatively insensitive to the kinetic and transport para-
meters for intermediate species and to vary most from flame to flame, with changes in the thermal
conductivity and the specific rates of reactions responsible for the major volume rate of heat
release.

The analysis then considers the following points: (1) Relations are developed between the
functional form of the curves for the mole fractions and fractional mass-flow rates of intermediate
species and: () the processes of kinetics and diffusion; () the way typical intermediates enter the
kinetic schema. (2) The shifts in the flame profiles with variations in parameters to increase the
deviations from the kinetic steady state are interpreted. (3) Interpretations are given for shifts which
parameter variations induce in curves for the relative importance of convection, diffusion, and
thermal conduction in maintaining energy conservation. (4) For this flame, it appears that the
approximation of constant specific enthalpy could be used to calculate the mole fraction of a
major component with an error of at most a few per cent even when the Lewis numbers are not
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unity. (5) The data show that the ignition temperature approximation would introduce two dif-
ferent serious errors. (6) The suggestion that radical recombination might serve as an important
means of energy transport does not apply to this flame. (7) The explicit relation is given between
the temperature gradient at the flame holder and the discontinuity in mole fractions in the Hirsch-
felder—Curtiss model. The discontinuity is not of a physically significant size.

PART 1

1. STATEMENT OF THE DIFFERENTIAL EQUATIONS AND THE
HOT BOUNDARY CONDITIONS

s |
y B
e A

v &

This paper uses the Hirschfelder—Curtiss (1954) formulation of the flame equations, since
their formulation has been shown to be adapted to the study of real systems such as hydrogen-
bromine (Campbell 1957) and ozone-oxygen (Hirschfelder, Curtiss & Campbell 1953
Campbell 1965a). The hydrodynamic equations for a one-dimensional steady-state lame

can be written in the form duj(Z)/dZ _ Fj(u), (1-1)

THE ROYAL A
SOCIETY

where u is a vector whose components are 7, the mole fractions and fractional mass-flow
rates, and F; are functions with continuous partial derivatives of all orders. Klein (1957)
gives a particularly clear summary of several of the approximations required to derive the
three following types of the F;(u):

An equation of continuity for each species, ¢:

Fg,(w) = m; R} M, (1-2)

i
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G; = m;n;v;/ (3 m; n;v;), the fractional mass-flow rate of species 7,
J

m; is the molecular weight of a molecule of j in g/mole,
n; is the concentration of j in mole/cm?,
v; is the average velocity of particles of type j with respect to a fixed axis system in cm/s,
M = 3 m;n;v;, the total mass flow with respect to a fixed axis system, and
J

R? is the net rate of production of a species ¢ in mole/cm?.
An equation of diffusion for each species ¢:

F,(w) = (Mn) 3 D5 [(G;) m;— (x;G) m), (1-3)
- o J¥t
~ where
p—
;ﬂ — D, is the binary diffusion coefficient for the pair ¢, j in cm?[s,
olm x; = n;[n, the mole fraction of species j,

=)
[i 5 n = Y n,, the total concentration in mole/cm?.

J

E 8 The equation of energy balance

Fr(u) = (M]A) JZ [(H; G;) [m;— ;i_fj}b(Hj G;)[m;], (1-4)
where

T is the absolute temperature,

H is the enthalpy of species j in cal/mole, and

PHILOSOPHICAL
TRANSACTIONS
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A is the thermal conductivity of the gaseous mixture in cal cm~!s~!deg~!.
44-2
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According to the discussion of § 15, the pressure variation can be ignored in most flames
so that the total concentration can be obtained from the perfect gas equation

n=P[RT; P aconstant. (1-5)
The hot boundary conditions require an asymptotic approach to equilibrium as Z - + c0:
lim F;(u) = 0. (1-6)

Z—> ©

Hirschfelder & Campbell (1953) have given reasons why 7' is a particularly appropriate
independent variable whenever 7°(Z) is an increasing function for all Z > Z_ 4. In this
case, since the F;(u) do not depend explicitly on Z, the new equations have the explicit form

T < Tpae. = lim T(Z) : duy(T)/d T = F,(u)[Fy(u). (1-7)

2. NEED FOR THE PROPOSED METHOD

The kinetic steady state for a chemical species j is defined by the equation

R?, RY rates of production and consumption of j, respectively,l (21)
R} = the net rate = RF —R¢ = 0. ’

In many static chemical reactions and in most flames there is one or more chemical species
whose mole fractions approximately obey the kinetic steady-state equation in the sense that

the ratio dP = Ry|R? (2:2)
is of the order of i or less.

Most flame studies have assumed that for an intermediate species s, x, can be calculated
from the kinetic steady-state equation (2-1) and the terms in G, can be omitted. The
approximation for G, can in some cases be worse than that for x,. Thus in the H,—Br,
system, when the approximation for xp, is good to about 10 %, Gy, is the most important
term in the temperature gradient (work reported in part by Campbell 1957). The ozone
flame is a practical example where neither approximation is legitimate. Thus in the high
temperature region X, obeys a kinetic steady-state equation over a hundred-fold more
closely than x, does, so that the kinetic steady-state assumption for O sets the larger
rate to zero! Furthermore, because of subtraction, the value of G, must be known to
three digits to obtain a single digit for d77/dZ (Campbell 1965a). For these and other
previously discussed reasons (Campbell 1965 5), it is desirable to have a solution method
which: (a) provides an estimate of G, a better estimate for x,, and some check upon the
error made; (b) does not depend upon initial approximations of unknown form; (c) is
consistent in the sense that it gives solutions which approach the exact solutions as the
chemical and physical parameters are varied to cause an approach to the kinetic steady state
(in this case the method correctly assigns the relative importance of various terms and the
solutions it generates can be used to understand the significance of different flame processes).
Part I reports such a method to be used whenever the deviation from the kinetic steady state
is not too large over a range [73, 7;] which excludes the singularity at 7},,, . This fills a gap
left by (1) a published method which generates solutions in a neighbourhood of 7,,,,.
(Gampbell, Buehler, Hirschfelder & Hughes 1961); (2) a new technique which continues
the solution when the deviations are sufficiently large (Campbell 1965 4).
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3. Two BASIC DIFFICULTIES THAT THE METHOD MUST SURMOUNT

The numerical integration of the hydrodynamic equations of § 1 presents a problem of
smoothness and an even more serious problem of stability when there is a species s whose
mole fraction approximately follows the steady-state condition (2-1). In this case, Fy, is
numerically indeterminate in the sense that the calculation of R? involves a loss in signi-
ficant figures (and thus in accuracy) as a result of subtraction between R? and RY, i.e.

d?¥ = R?|RF: a ratio of the order of 107¢ (e>1). (3-1)
If a smooth numerical approximation is to be obtained, this subtraction sets an upper bound
upon the size of the integration step for any of the standard methods which use some linear

combination of first derivatives to integrate from 7, to 7, ;. Since G(7,,,) —G(T,) is of the
order of (dG,/dT") AT, it is clear that if

[(dGy[dT)AT]/G,(T,) = 10~/ (f<e), (3-2)
then the rounding error at 7,,,, will be (¢—f) decimal digits to the left of the error at T,
If smooth solutions are to be obtained, integrations have shown that the ratio of (3-2) should
be at most of the order of 10-¢. In some cases, this demands such a small integration step
(compared with the length of the interval to be covered) that the calculation requires an
excessive time. Furthermore, such a great increase in the number of steps can lead to an
undesirable increase in probable accumulation of round-off error.

The argument of appendix A supports the conclusion that the differential equation
system suffers from instability of the sort discussed by Fox & Mitchell (1957) which Henrici
(1961) terms mathematical instability: any alterations of the starting values, such as are
inevitable in numerical integrations, define solutions which diverge drastically from the
desired central solution. Therefore, it is desirable to have a numerical method which follows
the desired solution and which is not so unstable mathematically. One such method,
developed by Curtiss & Hirschfelder (1952), becomes more stable as the interval size
increases. When applicable, it has the advantage of simplicity. However, the method
proposed in this paper can be used when the interval required for stability of the former
method is too large for the required accuracy.

4. EQUATIONS FOR THE PROPOSED METHOD
(a) Introduction

Although the method can be extended readily to treat much more general functional
forms, certain rather general characteristics of the flame equations of §1 allow significant
simplifications of the general formulae. Since the simplifications do not markedly obscure the
essence of the general method, it is convenient to give an explicit application to the equations
of § 1 in notation chosen to specify the computational elements of the calculation.

To simplify the exposition of the proposed method of successive approximations, the
general principles are given in this section while appendix C justifies the statements and
gives explicit equations in terms of the variables:

¢ a suitable reduced temperature [cf. equation (8:2)],
{x}¥, {G}* sets of N(L) linearly independent mole fractions (4-1)

(fractional mass-flow rates).
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Two intuitive phrases which will be used—*numerically determinate’ and correction
term’—are defined precisely in appendix B. For simplicity, suppose that a single mole

fraction, x, approximately follows the kinetic steady-state equation (2-1) and let

{x}¥-1, {G}E~1: the subsets of {x}¥, {G}* which exclude x, and G|. (4-2)

(b) Equations for the first approximation level

The simultaneous solution of differential equations for the variables of {x}¥~1, {G}:~! and
algebraic equations for (x,, G, R?) gives the first approximation. The first step in deriving
the set of algebraic equations replaces the pair of differential equations in x; and G, with
the single second order equation (C7) in R?. In this new system, x; and G, are obtained as
follows: (1) (C2) is a numerically determinate implicit algebraic equation for the function
x,({x}¥=1, R, t) in which R?is a correction term; (2) (C6) is a linear algebraic equation for
the function G ({x}", {G}:~',¢,dR?/d¢) obtained by manipulating the derivative of (C2).
The algebraic equations can now be obtained as follows: arguments in appendix C support
the assumption that in general the new system will have a property it possesses for the two
flames to which this method has been applied: as d7 decreases, both dR?/dt, d2R?/d#* enter
the system as correction terms which can be dropped to obtain algebraic equations. More-
over, this suggests how alternative initial approximations of varying complexity and
accuracy can be generated. The second order differential equation (G7) can be dif-
ferentiated g times to obtain a system of (g 1) differential equations in R? and its power
series coefficients, (R?),, m < (g+2). The maximum g, g, , for which (R?), ., (RY), .,
will be correction terms will of course depend upon the flame system and its parameters.
If g < gyax.» then the system of (g-+1) differential equations can be converted to a set of
(g+1) simultaneous algebraic equations in the (g+1) variables [R?, ..., (R}),] by intro-

ducing the approximations ‘
( ~?)g+1 = O) (Rg)g+2 = 0. (43)

Thus the following system of equations is to be solved simultaneously:

(a) one differential equation for each variable of {x}¥~1, {G}£~1,]
(b) (g-+1) non-linear algebraic equations for (R?),, (0<m<g), (4-4)
(¢) algebraic equations (C 2) for x, and (C 6) for G,.

(¢) The (k-+1)st approximation

The condition that the proposed method can be used only when (R?),, (RY), enter
equations (C 6,7) as correction terms suggests the following successive approximation
schema to reduce the error due to the neglect of (R?),,,, (R}),., at the level £ = 1. Stage 1,
k = 1: choose a g and integrate (4+4) over [7,,T}], where T) < T, . and [7,, 7] covers as
much of the flame as possible for reasons discussed in appendix E and at the end of § 5.
Stage 2: (a) numerically differentiate the kth approximation, (R?)®, to obtain (R}){, (R7){;
(b) integrate (4-4) over [T,,T}] using (R"){P, (Rr)$P. Stage 3: if necessary, repeat stage 2.
Success in the iteration may depend upon the use of suitable techniques of numerical
differentiation which are discussed in appendix E.
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Stage 1 can be omitted if another technique can predict sufficiently accurate (R?){V,
(Rm)$P for use in stage 2 (b). For example, in studies of the flame of part I for different values
of a parameter, o, it was found that (R?){V, (R")$" could be estimated for {w,, £) using values
for (w,, t) and {w,, ) provided ,,w, and v, were sufficiently close (Heinen 1962).

5. VALIDATION OF RESULTS 5 APPLICABILITY OF THE METHOD; CHOICE OF ¢

The tests discussed here were applied to results of integrations for the flame of part IT and
to various O flames. The first check compared values of R? computed by the proposed
method with those computed by a series solution about 7},,, , constructed by the technique
of Campbell et al. (1961). For sufficiently small d, the values computed from a first approxi-
mation level with g = 4 agreed with series values at a junction point to within rounding
error in an eight digit calculation. For somewhat larger d7, the successive approximations
(which were used only for the flame of part II) did correct the initial values to agree with
the series. The second check compared values of the flame variables computed by this
method with values computed by other techniques of numerical integration. As d? increases,
a recently published method, », becomes more suitable (Campbell 19654), while the
successive approximation schema must ultimately fail. This failure has two causes: (1) It
is no longer possible to obtain sufficiently accurate initial approximations for use in
numerical differentiation; (2) The derivatives affect the solution to an increasing extent.
From a fundamental viewpoint, this is to be expected since the general solution to the
equations for an asymptotic approach to equilibrium at the hot boundary involves two or
more eigenvalues (Campbell, Heinen & Schalit 1963) which are available to satisfy the
conditions on the G; at the cold boundary which is not a singularity of the differential
equation system in the Hirschfelder—Curtiss formulation (cf. § 18). Nevertheless, there is an
intermediate range to which both methods have been applied. In one test case, (A), the
sixth iteration (using a slight variant of the proposed method) gave values of R? which
agreed with an error in the fifth or sixth decimal with values obtained by #. In a second
test case, (B), the fourth iteration gave values which agreed within 2 9, (and generally
within 1 9%,) over most of the common range.

Finally, results have shown that even when the proposed method cannot be applied over
the entire flame, sometimes it may work satisfactorily over an interval in the neighourhood
of (but excluding) the hot boundary and possibly for a lower temperature interval. The
failure over part of the flame has been caused by either () the failure of simple methods to
solve the non-linear algebraic equations at the & = 1 level for a sufficiently high g to give the
required accuracy; (b) the failure of successive £ levels to converge (cf. appendix E). There
is no simple relation between d¢? and convergence in . Errors in R? are much more difficult
to correct by successive approximation in the temperature range where R? has its maxima
and minima. Thus, in one case studied, it would have been necessary to use all of the special
techniques of smoothing and numerical differentiation discussed in appendix E for the

1 This was for the hypothetical flame discussed in part II. Case (A) used the parameter w = 50 with all
Lewis numbers of unity. Method #¢ was conducted with equations in which G ; and x, were replaced as
variables by dR/d¢ and R, (R = R3/(1+2f)). Case (B) used w = 10 and Lewis numbers for ‘light’ free
radicals (see below).
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hotter region where |d?| < ca. 0-04 while not all were essential in the colder region where
|d?| was 0-15 to 0-20 and more.

In practice, values of g between 1 and 4 have been used at level k£ = 1. The choice
depended upon balancing three factors: (1) Desired accuracy. A value of g which is too low
to give sufficiently accurate values of R? to be differentiated to obtain input for level £ = 2
may still provide values of R? good to within an error of several per cent, and values of the
flame variables better by at least an order of magnitude than the values of R?. If greater
accuracy is required, provided @7 is not too great, it may be possible to increase g to obtain
that accuracy and avoid the programming for £ = 2. (2) Character of the equation system. For
some systems, as g increases, there can be a prohibitive increase in calculation time, or simple
methods of solving the non-linear equations can even fail to converge. (3) Asymptotic
convergence in k (cf. the preceding paragraph and appendix E).

6. ADVANTAGES AND DISADVANTAGES OF THE METHOD

The major disadvantage of the proposed method—an increase in complexity of the set
of equations—must be balanced against the advantage of avoiding the problem of mathe-
matical instability for each flame system. For example, for O, the proposed method took
between 6 and 7 times as much calculation to cover one interval using g = 1 as a Runge-
Kutta fifth order method required. Nevertheless, for that part of the flame to which it
could be applied, it required less time than the procedure », which could be used for the
entire range, since the mathematical instability of the O, equations makes them so sensitive
to the exact starting values, that » has to use repeated numerical integrations (Gampbell
1965a,0).

According to § 2, practical cases of interest require a method which is consistent in the
sense that it gives solutions which asymptotically approach the solutions for the complete
equation system as the physical and chemical parameters are varied to cause ¢f — 0. The
proposed method has been adjudged consistent on the following grounds: (a) For the flame
of part I1, successive approximations were generated for a fixed g at £ = 1 for flames with
different parameters and, thercfore, different d7. The difference between the levels £ = 1
and 2 decreased with d”. For the flame with the smallest 47, use of ¢ = 4 gave first and second
approximations which agreed almost everywhere within the rounding error of the calcula-
tion even for R? (i.e. dG,/dt). According to the definition of the level £ = 2, this means that
the first approximation satisfied the differential equations at almost all points within the
rounding error of the calculation. (There was, of course, slightly greater error in the im-
mediate neighbourhood of extreme values.) (6) The argument of appendix G suggests that
it is plausible to expect that this will be true for other flame systems.

Finally, the proposed method has the advantage that it ensures that G, will satisfy the
boundary condition for an intermediate, G,(Z,,) = 0, to a sufficiently high approximation
and thereby avoid the use of an additional eigenvalue (cf. § 10). This is a consequence of the
following argument: (1) The use of (C 2) makes x, — 0 since in general R? decreases much
more rapidly with 7" than does the coefficient of x, in R¢ and the method only applies when
d? = R?"/R? -> 0. (2) The use of the derivative of (C 2) also makes (dx,/df) -0 because: (a)
under the conditions of § 12, x has a single internal maximum; (6) by (1), x,—0. (3) The use
of (C 6) is equivalent to solving for dx /d¢ and using F,(dx,/d¢) = F, tosolvefor G,. (4) F;—0
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as Z - Zy14- (5) According to (1-3), the terms of F, can be divided into one set which have
¥, as a factor and a second which have G, as a factor. By (1), x, - 0 and inspection shows
that the coefficient of G, 4 0.

PART 11

7. INTRODUCTION

Part IT of this paper reports extensive calculations on one idealized flame. The method of
part I was very convenient whenever deviations from the kinetic steady state were not too
large. For larger deviations, another technique, which has been developed further and
published (Campbell 1965 &) was used. The purpose of part II is the analysis of these results
in the following terms: (2) how the kinetic model and kinetic and transport parameters
affect the properties of free-radical flames; (4) the significance of various assumptions and
approximations which have been used in flame theories. To provide a basis for this dis-
cussion, the following section casts the general flame equations in a form and notation
designed to clarify the relation between these results and experimental flame systems.

8. DIMENSIONLESS FORMS FOR THE GENERAL FLAME EQUATIONS

To facilitate the study of flame properties as a function of fuel properties by selecting a
useful set of independently variable parameters, the general equations of § 1 are rewitten in
terms of dimensionless variables as follows. A reduced distance, which is a constant multiple
of Z is defined using C; and m; for species j = j,:

g = {[Mqo]/[mjoA(Tmax.)]}Z) (8.1)
where C; is the heat capacity of j averaged over [T 4, Thax.]- The reduced temperature,
l= [T”_Tmax.]/jznaxd (8'2)

has two advantages in numerical integrations: (1) it scales the successive derivatives in
series construction at 77, ; (2) any power series coefficient of 7* with respect to ¢ is inde-
pendent of 7., at /= 0. However, in a comparison of different flames it is more useful to
have a reduced temperature having a fixed range of values:

T = [T_.- Tcold]/[Tmax. ﬁT‘cold] = [tcoldﬁt] /tcold (0 STS 1) (83)
The terms of the energy balance equation are regrouped to give
a7 MCjy | (AT ,
ﬁ = Tmax. {;,;ljo A(Tmax.j} { /1 }E} (8 4:)
By o i 56, = 3 (G Towe )} () G} (8:5)
Then the derivatives for the reduced temperature, ¢, are
dUdZ = L, (ATJAZ) — {MC,y[[m;, (T )T} dEJdE, (8-6)
ddl = [A(Tp, )N F, (87)
R?, the net rate of production of species j, is assumed to be a linear combination of rates
for reversible reactions: R — RI—Rr
i i (] / ]-8
RI(RY): the rate of the forward (reverse) ith reaction.} (8:8)

45 Vor. 259. A.
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To determine the effect of varying the forward and reverse specific rates for a given reaction
iy by a constant factor, 7, it is convenient to introduce reduced reaction rates:

r=Rily,; 17 =R}y, (8:9)

Since § 11 will show that the mass-flow rate, M, is most sensitive to the dominant reactions
in the net rate of consumption of one of the fuel molecules, and since such reactions should
contribute heavily to the rate of heat release per unit volume, it is convenient to choose one
of these reactions as 7, and to combine A and y; into a dimensionless group of parameters.
Then the equations of continuity become

dG;[d = p*(myfm;g) 75 @ = [m3, A(Tas) 73] [[MPC ). (8:10)
The equations of diffusion assume the form
5/ dC = (AT ) X] 3 85 L3; Gy ) — G (s ) (8:110)
JFi
9;; = (C,nD;) /A has the form of a Lewis number. (8:11d)

9. SIGNIFICANT ASPECTS OF THE IDEALIZED MODEL; SPECIALIZATION OF THE
GENERAL REDUCED EQUATIONS
This section summarizes the significance of various aspects of the idealized model and

specializes the general reduced equations of § 8. The 4BC schema, suggested by Hirschfelder
& Curtiss [cf. Giddings & Hirschfelder (1957)], has two reactions:

(1) free radical reaction: heat+X+A4 <= B+X (X, any molecule),} (9-1)

(2) main combustion reaction: B+ 4= C+ B} heat.

For suitable parameters, this schema mimics what appear to be the essential aspects of a
free radical mechanism for flame kinetics with B as a free radical:

The formation of a free radical by R{ requires a comparatively high activation
energy while radical ‘recombination’ by R} requires a comparatively low
activation energy. (9-2a)

The main combustion reaction, R{, uses a free radical, B, and requires a
comparatively low activation energy. (9-20)

"To obtain the simplest possible equations consistent with these requirements the following
assumptions were introduced (although they are not quantitatively realistic, they were not
expected to affect the results qualitatively):

(a) In the functional forms which Campbell & Fristrom (1958) suggested for use in
specific rates in flame studies,

k= ATvexp (—AE[RT) = AT, )" (14-0) exp [ /(1 + t)],}

7 — AEJRT, (9:3)

ax. )

the ‘comparatively low’ activation energies are zero and the comparatively high activation
energies are the same:

AE; = AE{ = 0; AE{- AEj;= (@ = heat relecased. (9-4)
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Moreover, the collision characteristics are the same for the forward and reverse reactions,
and Al =My =A4,; A= A5=Ay; b =05 —bf—b5=0. (9-5)

(b) The approximation of constant equal heat capacities gives the enthalpies:
Hy= Q+C0(T—Thax), Hy=2Q+C0(T—Thw), Hy= C(T—Th). (9-6)
C=Cy=Cy=0Cy HyT,,.)=0.

(¢) The assumption that the J;; are independent of temperature is suggested, but by no
means justified, by the fact that this would be true for hard spheres:

d;;: constant function of 7. (9-7)

(d) The differences between the thermal conductivities of the species are ignored in order
to make the thermal conductivity of the mixture be a function of 7" alone. Furthermore, so
that the reduced conductivity would enter only the { and not the ¢ equations, it is assumed
to satisfy the equation

(VAT e )] [T T 1 = [A AT )] (1 4-2)° = 1. (9-8)

According to the discussion of (8:9), ¢, should be chosen as 2. Then, because of assumptions
9-5, 8) it is convenient to define
( ) Vo = Ao[ T " (9-9)

Then the eigenvalue x* of (8:10) is just the x, of a previous paper (Campbell ez al. 1963):

it = ) ATV OO, 010
m = m, = myz = m (as required by the kinetic schema).
The general dimensionless equations are
dufdt = 7,17, F,— NA(Tow)1dujdl, = F; (9-11)
F, = t-+h[AG,+2AG,], h=Q/(CT,,.), Au=u(t)—u(t=0); (9-12)
Z,, = é.&-}l(xiGj——xj G); (9-13)
i
Fos = ol =2 0 =T, Foy = 07 (9-14a)
Ry = [N Ty )] 01y = 24 f— %5 = R{— (9-140)
Ry = (AN Toax )1 72 = Kp 24— XX ] = B — 9y (9-14¢)
0 =7/ (4i[ T ]?) = Ayl 4y, [=exp[—=y/(1+1)], 7 =AE[(RT,) =@/ (RTng)l-M)

The numerical values for the parameters are summarized in appendix F.

10. SIGNIFICANCE OF CONVENTIONAL APPROXIMATIONS

The significance of conventional approximations has three different aspects: (1) the
simplifications they impart to flame theory; (2) how they depend upon the parameters
t Note that in the notation of some previous reports, #Z, = %,/w and p, = pw. The switch to the notation
of this paper emphasizes that the eigenvalue M depends primarily upon the parameters for the specific

rates for the main combustion reactions and is much less strongly affected by those for the free-radical
specific rates (see § 11).

45-2
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describing the flame; (3) the error they introduce into x* (i.e. M), {(Z), the x;(t), G;(¢), and
R (t). This section is devoted to the first aspect. Two common idealizations are to assume
that all Lewis numbers are unity, 3y = 1, (10-1)

and that the mole fraction of any intermediate species, s, can be obtained from the kinetic
steady-state equation, R = RP —RC — 0, }

10-2
RZ(R¢) being the rate of production of s by chemical reactions. (102)

Each of these approximations reduces the number of linearly independent x; as follows.
Hirschfelder (1960) has shown that (subject to the approximations required to derive the
equations of § 1), the specific enthalpy remains constant <> (10-1) holds:T

> Hx; =mlimm™'3 H,x,

j Zoe ] (10-3)
m = 3 m;%;= constant (in general).

7 .
Thus if (10-1) is applied to a flame with w different chemical species which include
different intermediates for which (10-2) is assumed, then there are only

w—1—(1+1) (10-4)

linearly independent ;.

A third common idealization omits the terms in G| for any intermediate, s. However, § 2
shows that it may be necessary to obtain G, from the consistent method of part 1 (cf. §6).
In either case, if there are I such intermediates and u linear relations between the net rates,
Rz, then the form of equation (1-2) for Fy; shows that there will be

(w—1)—(u+1) (10-5)
linearly independent G;. Because of its special simplicity, a favourite type of system for
theoretical study is one in which « = 0 and w = 1+ (/1) so that the x; are determined by
the solution of the algebraic equations (10-2, 3) and there is only one differential equation
in some G;(f).

An even greater advantage of obtaining G, from an algebraic equation is that it simplifies
the eigenvalue character of the problem. In all cases which have been studied, the general
solution for the equations at the hot boundary defined by the asymptotic conditions (1-6)
has had one eigenvalue for each of the linearly independent G;. These eigenvalues can be
adjusted to obtain the prescribed values at the cold boundary which is an ordinary point
of the differential equation system (cf. § 18 and Campbell ¢f al. 1963). The reduction to a
single eigenvalue, #*, enormously simplifies the calculation.

The subsequent sections provide information about the second and third aspects of the
significance of conventional approximations by analysing solutions for the idealized flame of
§ 9 for wide ranges of the Lewis numbers and of w = 4,/4,.

11. SIGNIFICANCE OF THE PARAMETER p* AND ITS DEPENDENCE
UPON PROPERTIES OF FLAME GASES

Table 1 summarizes some results (Campbell ¢f al. 1963) to show that g* varies rather
slowly with wide variations in the I; and the kinetic parameter, w. Since w = 4,/4, and
w¥* ~ A,, it follows that #* is rather insensitive to variations in the kinetic parameters for the

1 The symbol ‘e’ is used in the mathematical sense ‘if and only if’.
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TaBLE 1. VARIATION IN pu* ~ A,/ M?

For specific values of the Lewis numbers, see appendix F. The relative deviation, df, is defined by
equation (2-2). |d5|™ is the maximum value for the temperature region over which G, < 0-95G,[T(Z,,,)].

Lewis numbers w = A,[A, n* |dg|mex
‘heavy’ free radicals 1 4587-6 1-3x10-3
600 4557-0 6-7 x 10!
all unity 1 4578-3 3:2x 1073
1000 3880-0 6-7 x 10°
‘light’ free radicals 1 4510-0 3-0x 102
300 2583-0 3-7 x 10+

free-radical reaction. Furthermore, since these variations produce order of magnitude
changes in the deviation from the kinetic steady state, x* is comparatively insensitive to
such deviations. Thus the form of equation (8:10) for u* suggests that A/ will be most
strongly affected by variations from one flame to another in thermal conductivity and in the
specific rates for the dominant terms in the main combustion reactions responsible for the
major heat release per unit volume. The qualitative form of the functional dependence
should be the same as the one given by the defining equation for 4*:

M = m; {[M(Tax.) 7:0) /1% C; 13 (11-1)

These observations show that #* functions as a parameter which can be adjusted to match
G;(Ze01a) for a major component. According to the argument at the end of §6, when the
method of part I is used for an intermediate s, then the condition G,(Z,,4) = 0 is satisfied to
a high approximation. In general, if (w—1) —(z+1) > 1, the following procedure should
be used in numerical integrations: (1) For a fixed u*, vary certain other eigenvalues
(Campbell et al. 1963) to satisfy the G;(Z,,4) for all but one of the major components and any
intermediates for which the method of part I isinapplicable; (2) Adjust x* to fit the condition

on the remaining major component and repeat step (1).

12. QUALITATIVE CHARACTER OF CURVES FOR FREE-RADICAL INTERMEDIATES;
RELATION TO PROCESSES OF KINETICS AND DIFFUSION

In contrast to diffusion theories of flame propagation (Tanford & Pease 1947) which
predict a monotonic decrease of the mole fraction of an active intermediate, s, with tem-
perature, every numerical integration of equations (1-1-6) has given: (@) an internal
maximum in x,; (b) a qualitative character for G;(7") and R?(T") which is the same for all s.
The object of this section is to show that both (@) and () can be plausibly inferred from
conditions which commonly occur in flames.

Appendix G gives a detailed argument which demonstrates that x; can be expected to
have a single internal maximum whenever the dominant reactions which produce s involve
at least one fuel molecule (e.g. X+ Br, - 2Br+ X in the H,~Br, flame) or an intermediate
which has a single internal maximum in ¥, and for which R¢ is of the order of R? at higher
temperatures (e.g. Br+H, — H+-Brin the H,~Br, flame). Then the concentration gradients
will be accompanied by diffusion away from the maximum so that the net rate will have a
positive internal maximum flanked at both higher and lower temperatures by a negative
minimum. This is the qualitative character of figure 1 of Z,/w. According to equation (1-2),
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3

21

109(22, J)
)
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| ] | | ] 1 ] [
0 02 04 06 0-8
(1-7)
T'reure 1. Curve 1, w = 1, set I; 2, w = 600, set I; 3, w = 1, set 1I;
4, 0w = 20, set II; 5, w = 300, set II.

4 3
_..4_.~
-8 .
] j L] ! | ! | J
0 0-2 0-4 0-6 08
(1-7)

Ficure 2. Curve 1, w = 1,set I; 2, w = 600, set I; 3, w = 1, set II; 4, w = 300, set II.
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this sign variation in the net rate of free-radical production implies the type of fractional
mass-flow curve shown by figure 2 in which G, increases from its hot boundary value, passes
successively through a positive maximum and a negative minimum and approaches zero
asymptotically.

13. RELATION BETWEEN DIFFUSION AND KINETIC PARAMETERS AND
DEVIATION FROM THE KINETIC STEADY STATE

In general, an increase in |d7| can be expected for an intermediate, s, of § 12 under either
of the following two conditions. First, an increase in the binary diffusion coefficients
involving the intermediate compared with those involving only major components should
increase the diffusion of s and thereby reduce the gradients accompanying the maximum
in x; and increase |d?|.

Secondly, suppose the kinetic schema consists of one set of ‘main combustion’ reactions
and a second set of reactions primarily responsible for the production and consumption of's.
(For example, in the H,~Br, flame the second set consists of the reaction Br, + X = 2Br-- X,
while for the ABC schema, the second set consists of reaction (1). Then the following steps
show that |d?| should increase as the ‘main combustion rates’ are increased compared with
the ‘intermediate’ rates. It will be convenient to consider the opposite variation, @ —> 0.
Then: (a) dG,/dt+> 0, since 0 = G,(t,4) == G,(¢ = 0) and the form of equation (1-2) shows
that G, must be continuous in the absence of a catalytic surface; (b) dG,/d{ - 0 since
dG,/d¢ 4 0and the form of equations (8-5, 7) shows that d¢/d{ 4 0; (c) w*r? = w*RE dP [y, + 0
as a consequence of (5) and equation (8-10) for dG/d{; (d) RE[y, — oo as d¥ — 0, since by
§ 11 p* 1s finite. This says that as df — 0, the rates for the intermediate become increasingly
rapid compared with those for the main combustion reactions.

For the ABC flame, table 1 shows the quantitative effects for the variation of the binary
diffusion coeflicients and of w = 4,/4,.

14. RELATIONS BETWEEN (a) DIFFUSION AND KINETIC PARAMETERS AND
(b) x,, G, AND THE DIFFUSION VELOCITY FOR AN INTERMEDIATE SPECIES

"This section presents a table and graphs to show the quantitative relations for the 4BC
flame and singles out five qualitative aspects which are interpreted in terms of equations
and physical processes to justify the conclusion that they will be common to any inter-
mediate s, which satisfies the conditions of § 12.

According to §§ 11 and 13, |dF| for the ABC flame can be increased by increasing o, i.e. by
decreasing 4, with comparatively little effect on M or by increasing A, which causes M to
increase roughly as ,/4,. Since the form of equations (13, 4) shows that dx,/dZ and d 7/dZ
are approximately proportional to M, and since the diffusion velocity should also vary
roughly as M, the appropriate quantities for discussion of |d?| should be the mass-average
diffusion velocity compared with the total velocity, pV,/M, and the reduced gradients

(dx,/d{~ M~1dx,/dZ, dt/d{~ M-1d¢dZ).
Aspect 1. As the kinetic parameters are varied to decrease |dr|, both |pV,/ M| and |dx,[d{| decrease.

In the kinetic steady state, the reactions governing the net production of s are sufficiently
rapid to maintain local equilibrium with respect to changes produced by total mass flow,
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diffusion, and other chemical reactions. Since if s satisfies the kinetic conditions of § 12, it
will have a single internal maximum, and since the effect of diffusion must be to reduce
gradients, it is plausible to conclude that in general the kinetic steady state corresponds to
the greatest |dx,/d{|. Furthermore, (1-3) implies that M ~!dx,/dZ ~ the reduced diffusion
velocity when all diffusion coefficients are equal:
M~'dx,/dZ = n~1D™! % (2, G;m;i ' —x; Gomg )
JES

(14-1)
= MDD 2 x5 (0 —vg) = = (V3 M) %, D7,
i

where V7 = v,— ¥x;0;, the number average velocity. It is plausible to surmise that |dx,/d{]
=7

will be in generalt an increasing function of |pV;/M| even when the diffusion coefficients are
not equal.
Table 2 shows the variations for (pV,/M).

TaAaBLE 2. THE REDUCED DIFFUSION VELOCITY OF THE FREE RADICAL B As A
FUNCTION OF DIFFUSION AND KINETIC PARAMETERS

The symbols H, U, L designate solutions using the following Lewis numbers: set I (‘heavy’ free radicals);
set II(all unity); set ITII (‘light’ free radicals) [cf. appendix F]. Since all masses are the same for the 4BC system,
(14-3) shows that pVy/M = (G 4/x ) —1.

w =1 w = 100 w = 300
P A - - A N - A — w = 1000
T H U L H U L H U L U

0-2436 - 5281 —10-018 — —4-440 —6-673 -—14-332 —3-212 —4-176 — —2:540
0:3493 —4:337 —8:074 —59-528 —3-682 —5-767 —14-226 —2-863 —3-918 —10-524 —2:460
0-4550 —3404 —6-234 —47-124 —2-882 —4-598 —13-245 —2:346 —3-353 —8-924 —2:232
0-4902 —3:077 —5-611 —42.731 —2:607 —4-180 —12-650 —-2:251 —3-111 —8477 —2:116
0-5431 —2:569 —4-661 —35-895 —2:198 —3-541 —11:501 —1-846 —2-713 —7-747 —1-906
0-6135 —1-871 —3-387 —26-472 —1:639 —2-679 —9-532 —1:423 —2:137 —6-576 —~1:574
0-6488 —1:521 —=2-761 —21-730 —1:363 —2-251 —8:385 —-1.207 —1-837 —5-890 —1:390
0-7192 —0:845 —1-574 —12:486 —0:821 —1-409 —5-829 —-0775 —1226 —4-315 —0:998
0-7545 —0-632 —1-033 —8:144 —0:558 —1-001 —4-442 —0:660 —0-919 —3-431 —0-793
0-8514 4+0-163  +0-157 +1:762 +0:092 +0-017 —0-393 +0-008 —0-099 —0-712 —-0-212
0-9505 +0-399 +0-585 +5-396 40401 — +3:230 +0-391 +0-511 +42:240 +0-353

Aspect 2. As |d¥| increases, the maximum in x, decreases. 'The following quantitative argument
supports the foregoing qualitative one. Ior a fixed ¢ and a fixed set of x;, j 4 s, consider the
solution of the following equation for x,:

RS = RY— R (14-2)
Since §12 shows that R? > 0 where x, has its maximum, an argument similar to that of
appendix G shows that x, will be a monotone decreasing function of R? and, therefore, of d’.
Furthermore, it is plausible to expect that the variation in the x; for major components [and,
therefore, the coefficients of the powers of x; in (14-1)] will not be sufficient to alter the
conclusion.

Aspect 3. |dx,/d{| is greater on the cold side of the maximum. While the fact that the position of
the maximum in x, is much closer to 7}, than to T;,,, leads one to predict a larger ¢ gradient
on the hot side, the opposite is true for dx,/d{ [cf. figures 3 and 4]. The change in dx,/d{
follows from the facts that: (@) according to § 18, dz/d{ is bounded away from zero at the
flame holder; (%) there is a slow approach to thermal equilibrium about 7, in the sense
that d¢/d{ is comparatively small over a significant range of ¢.
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80 3

60

20

0 0-2 04 06 08
(1=7)

Ficure 3. Curve 1, v = 1,set I; 2, w = 600, set I; 3, w = 1, set II; 4, w = 300, set II.

80

Ficure 4. Curve 1, w = 1,;set I; 2, v = 600, set I; 3, w = 5, set II; 4, = 300, set II.

Aspect 4. The maximum in x, shifts toward the hot boundary as |df| increases. This follows from
the fact that as the reactions governing the net production of s are no longer sufficiently rapid
to maintain local equilibrium diffusion must cause a shift in the direction of the smaller |V
which by Aspects (1, 3) are on the hot side.

46 Vor. 259. A.
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Aspect 5. The extreme values of |G| decrease as the kinetic parameters are varied to increase |d?|.
Now Gy = Mtmn(V,+0) = (p.fp) [(pV:/ M) +1]. (14:3)

According to Aspect (1), the extreme values of |pV,/M| decrease. If, as is the case for the
ABC flame, the maximum point shifts toward ¢ = 0 and the minimum toward £, where
p,/p 1s smaller, the conclusion follows at once.

15. SIGNIFICANCE OF DIFFERENT PROCESSES IN MAINTAINING ENERGY
CONSERVATION; CONSTANCY OF SPECIFIC ENTHALPY

This discussion of energy conservation is limited to flames for which the following four
approximations can be introduced into the more general equation for a one-dimensional
steady-state system which approaches equilibrium asymptotically as Z — co (Hirschfelder,
Curtiss & Bird 1954, p. 750).

Approximation 1. The contribution of radiation to the energy-flux vector is ignored (cf.
Hirschfelder e al. 1954, p. 761).

Approximation 2. The term in thermal diffusion in the energy-flux vector is ignored since
itis believed to be important only for flames which have H, as a constituent (cf. Hirschfelder
et al.; Waelbroeck, Lafleur & Prigogine 1955).

Substitution of this approximation for the energy-flux vector gives

0= —~/1d—Z—|—n§2:[1lx,K—rM(%§Z:@xz‘;1_ri;ﬁzl: ixi)
M limo?) — (§46) 030 — 0. (15:1)

Z—>0 dZ
M = pv, a constant in the one-dimensional steady state (Hirschfelder ef al. 1954, p. 748)
(15-2)
(%—77+/<)§—%: M(v— limv) 4 (P— lim P), (15-3)

Z—>w© 7>
7, k being the coefficients of shear and bulk viscosity, respectively.

Approximation 3. The term in the kinetic energy of gas flow is dropped. In general, the
relative importance of the kinetic energy of overall gas flow should be measured by com-
parison with the diffusion term in equation (15-1):

w3 V=05 B mfm) ). (15-4)

The comparison should not be drawn with the terms in specific enthalpy since Hirschfelder
(1960) has proven that the specific enthalpy is constant under special conditions (see below
in this section). Since [H,—H,(T = 0)]/m, is of the order of the square of the mean peculiar
speed for i, it is usually assumed that the velocity term is unimportant until the over-all
flow velocity becomes of the order of the peculiar speed. However, it has been shown in the
ozone flame, that, due to subtraction of the leading digits, the coeflicient of /; in equation
(15-4) is sufficiently small that the term (A4/2) (v2— lim »2) cannot be ignored over an
Z->

important range of high temperatures for richer fuel mixtures. Solutions including the
kinetic energy term even have a different eigenvalue character (Campbell 19654).
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Approximation 4. The viscosity term is omitted. Even if (after multiplication by v) the two
terms of equation (15:3) were not separately negligible, subtraction in their leading terms
could make the viscosity term itself insignificant. Therefore, appendix H gives an argument
which is not based on considering separate terms to show that the viscosity term can be
expected to be negligible in common cases.

After the terms in kinetic energy and viscosity have been dropped, it is useful to regroup
the terms of (15-1) to separate the contributions due to convection, thermal conduction,
and diffusion, respectively:

MHA—-A(dT/dZ) +n3 Hxl M;iﬂf?

(15'5)
—m-! Z H, x; = enthalpy/g.

The following ratios have been computed to determine the relative 1mportance of the
three processes using only dimensionless parameters:

convection term MHA
' = conduction term ~ A(d7]dZ) = Lrhlxa+ 22 )/ Fo
cop s n> H;xV, (15-6)
diffusion term ST b G426 — (2, 4-2x5)] T

l

Tp

conduction term ~ A(d7/dZ) F,
(Although the enthalpy is defined only up to an arbitrary constant,
nZH X; zn m; H v

is well defined since the ¥} are diffusion velocities with respect to the mass average velocity.
Thus >n;m;V; = 0 [cf. Hirschfelder et al. 1954, p. 454].)
J

Consider first the comparative importance of convection and thermal conduction.

Because of the assumed approach to thermal equilibrium, lim 7, = co. For the ABC flame
Z —> ©

convection is more important than conduction for (7'—T,,, ) = ca. —0-0141,,, . Asfigure5
shows, the importance of convection decreases rapidly with decreasing 7" until the ratio has
a value of a few per cent. Since the conduction term has a maximum, the ratio has a
minimum. For ‘heavy free radicals’, a 600-fold change in the kinetic parameter o never
introduces more than 20 9%, variation in r,. A minimum of about 0-022 occurs in all cases at

(T—Tp) ~ —047T,,, . For ‘light free radicals’, (7,),-300/(7;),-1 T€aches values as large
as ~ 2-5. In this case the minima shift drastically:
minimum
w value (T— Tuax)
1 0-026 —0-22T,,,,
300 0-045 — 046 Th,,.

The shift can be interpreted in terms of the change in temperature gradient produced by
free-radical diffusion as follows. Figures 3 and 4 show how the greater diffusion of light free
radicals decreases the maximum in x, and increases the values at lower temperatures.
Figure 6 shows how for a fixed 4, this is accompanied by a decrease in the maximum reduced

T Cf. equations (8 4) (9-6) and (9-12). To obtain the equation for r p» Dote that since all masses are the

same, it follows from (14-3) that amV; = M{(G;/x;) —1}.
46-2
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20 |

10%r
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Ficure 5. Curve 1, = 1,set I; 2, w = 600, set I; 3, v = 1, set I; 4, » = 300, set II.

1
1601~ /'3
T2
TS

] "(/41. N
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0 0-2 04 06 08

1—7

.
.

Ficure 6. Curve 1, 0 = 1,set I; 2, 0 = 600, set I; 3, w = 5, set II; 4, = 300, set II.
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rate for the main combustion reaction. Figure 7 shows how this is reflected in a decrease in
the maximum for the reduced temperature gradient and a shift in the maximum to lower
temperatures. Since M = pv is a constant (Hirschfelder ef al. 1954, p. 454) and H varies
much more slowly (cf. the discussion of Figure 9), the minimum or 7, increases and shifts
to a lower temperature.

60

a0 / N

............
et .

102(d¢/d9)
o
/

20—

l | | I I | | | |
0 0-2 0-4 0-6 0-8

l1—71

Ficure 7. For a hard sphere model for which A(T},,, )/A(T) = (1+¢)-%.
Curve 1, » = 1,set I; 2, o = 600, set I; 3, w = 5, set I1; 4, o = 300, set II.

Next consider the relative importance of diffusion and thermal conduction. Hirschfelder
(1960) has shown that when the approximations of equations (1-2-5) are used, the enthalpy
per gram is constant < all Lewis numbers are unity. Thus the processes of diffusion and
thermal conduction are of equal importance « 7, = 1 < the specific enthalpy is constant «»
all Lewis numbers are unity. Thermal conduction will be the more important process
orp <1 oH> limA. Figure 8 of (r,—1) shows the quantitative effect of non-unit

7>
Lewis numbers upon the relative importance of the two processes. With Lewis numbers for
‘heavy free radicals’, thermal conduction is the slightly more important process in the hot
region for 7 > ca.0-7, and the less important process in the colder region. In any case,
|rp—1| < 0-005. Conversely, with Lewis numbers for ‘light free radicals’, diffusion is the
more important process for 7 > ¢a. 0-7, and thermal conduction dominates in the colder
region. The approximate range for r;, is 0-989 < r,, < 1-16. (Larger values which have been
reported for a neighbourhood of 7,,,, are wrong because of errors in numerical integration
in that region (Heinen 1962).)

Next consider whether a constant specific enthalpy approximation could be used to
determine one mole fraction as a function of the others. In a theoretical study using a point-
by-point numerical integration, this possibility depends upon how the error will grow. Since


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

376 E. S. CAMPBELL, F. J. HEINEN AND L. M. SCHALIT

there has been no test of this growth, at the present it is only possible to calculate the relative
error at a fixed point when the approximation is used to calculate the largest term in the
enthalpy sum. The relative error for the 4BC system is shown in figure 9 which gives

ry = [lim H— A AH, = [x(t) —x,—2x,]/x(t), ' (15:7)

7~ 00 :

where x(f) = [x,(t = 0) +2x,(t = 0)] —£~~'¢ and AH, = sum of the positive terms in the
enthalpy difference.

121~

10%(r,—1)

£.\3

o~1'--.\- 03 04 06 0-8
0 L4, N | 1 | |
/ .'"N-

1,2 B e R

1—7

Ficure 8. Curve 1, w = 1,set I; 2, w = 600, set I; 3, w = 1, set II; 4, » = 300, set II.

Figure 9 can be interpreted in terms of physical processes as follows. Let

¥y, x5 be mole fractions in a ‘normal’ ABC flame with all unit

Lewis numbers so that 7,; = 0. (15-8)

Inspection of the steps in the calculation showed that the leading digit of r,, is determined
wholly (primarily) by the difference (x,—x¥) in that case where diffusion coefficients have
values for ‘light’ (‘heavy’) free radicals. Thus for ‘light’ (‘heavy’) free radicals

xg < 2 (xy > x)

in the neighbourhood of the hot boundary. This is correlated with the fact that a shift to
‘light’ free radicals spreads the main combustion reaction to lower temperatures (cf.
figure 6) and decreases the eigenvalue #*. This, in turn, is associated with a lower G,, and
therefore a lower |dx,/d¢| in the neighbourhood of T, for ‘light’ free radicals. At lower
temperatures, the decrease in d#/d{ due to lower G(¢) causes a shift so that

|dx,/d¢| > |dx¥/dt],
and, ultimately, x, > x%.
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48—

10474 (curves 1, 2); 10%r 4 (curves 3, 4)

J | 1 |
0 0-2 04 0-6 08

l ] ] |

1—71

Ficure 9. Curve 1, w = 1,set I; 2, w = 600, set I; 3, w = 1, set II; 4, o = 300, set II.

16. THE IGNITION TEMPERATURE CONCEPT

Data from the ABC flame show that the assumption of an ignition temperature, 7,
introduces two serious errors. Two common suggestions for 7; are: (a) 7~ 0-67,,,

or t;=—04; (b) t,=1t4,), Z,= inflexion point. Thus, use of table 3 shows that
—0-55 < £; < —0-4 for these choices. The first error—the assumption that no significant

TABLE 3. INFLEXION POINT FOR ¢(Z)

For definition of ‘light’ and ‘heavy’ free radicals see appendix F.

‘light’ all unit ‘heavy’
free radicals Lewis numbers free radicals

) —1t G, -1 G, —t G, )
1 0-455 0-958 0-447 0-951 0-447 0-951

50 0-511 0-902 0-463 0-948 0-455 0-950

100 0-527 0-873 0-463 0-936 0-455 0-944
300 — — 0-479 0-916 0-463 0-931
600 — — 0-495 0-901 0:471 0-915

1000 — —_— 0-511 0-892 — —

chemical reaction occurs below #—is shown by 1—G,(#) since dG,/dZ = m,R%/M.
G,(—0-4) = 0-90 (0-75) for ‘heavy’ (‘light’) free radicals and table 3 gives G,[¢(Z,)]. The
second error—the inadequacy of an average reaction rate—is shown as follows. The ratio
of the exponential factor in a specific rate at 7, to that at 7 is

max.

exp [(—AE[RT ) (4/[1+4])]-
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Thus for —0-4 > ¢, > —0-55, exp (0-67AE/RT, . ) < ratio < exp (1-2AE/RT,,, ) so that for
the reasonable value AE/RT, ., ~ 5, 27 < ratio < 400.

ax.

17. ENERGY TRANSPORT BY FREE RADICALS

Since free radicals are highly energetic species, Bartholomé (1950) suggested that they
might play an important role in energy transport from the hot gases to incoming fuel by
carrying energy to be released upon recombination. Figure 10 gives the ratio of the heat
released by the free-radical reaction (1) for the ABC flame to the total release:

— (%07 Y) (R, — %, 07).

16

— %, 0!
%, 0!

7
2

102 -
T

! | | ! I ! | |
0 02 04 06 08

1—7

Ficure 10. Curve 1, w = 1, set I; 2, w = 600, set I; 3, v = 5, set II; 4, o = 300, set II.

Comparison with figure 6 for Z; shows that the increase in free-radical concentration in the
colder region (with an increase in w or a shift to Lewis numbers for ‘light’ free radicals)
increases the volume rate of heat release for both reactions. Whereas the relative contribu-
tion of the free-radical reaction increases with a shift to Lewis numbers for ‘light’ free
radicals, it decreases with an increase in w. Nevertheless, the relative contribution of the
free-radical reaction is at most ca. 1-5 9, for ‘heavy’ free radicals and for ‘light’ free radicals
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it only reaches as much as 16+5 %, near the cold boundary when o = 5. It is still necessary
to examine other flames with more energetic free radicals to determine whether in such
cases energy transport by free radicals might be significant.

18. CoLD BOUNDARY CONDITIONS: THE HIRSCHFELDER—CURTISS MODEL
FOR THE FLAME HOLDER

This section has three purposes: (@) to show why the Hirschfelder-Curtiss model requires
a non-vanishing temperature gradient; () to give a rigorous equation which proves that a
constant enthalpy flame must have a discontinuity in the «;; (¢) to point out that other
possible idealizations have features which are at least as artificial.

Consider, therefore, possible idealizations for a physical flame which is finite and not
perfectly pre-mixed, in which some product does diffuse into the fuel gas. One way to
obtain a definite mathematical problem including back diffusion would be to idealize the
finite flame to an infinite flame with an asymptotic approach to pure fuel as Z - — co.
However, such an idealization would require replacing the actual specific rates by zeros for
some temperature greater than 7(Z_,4). Otherwise the reaction would all vanish to minus
infinity. Thus it was at least as realistic for Hirschfelder and Curtiss to ignore back diffusion
and to assume a perfectly pre-mixed fuel. Then the equation dG,/dZ = m, R?/M led to two
types of boundary conditions:

(a) Since R" = 0 for any fuel molecules and d7°/dZ is in general positive, the flame
variables cannot be well-behaved functions of 7" unless

lim (d7/dZ) > o. (18-1)
Z—> Zda
(Note that despite the fact that 7(Z,,4) is an ordinary point, some arguments about the
character of the mathematical problem have incorrectly treated it as a singular point.)

(b) Inlieu of a catalytic surface, G,(Z) must be continuous:

Goc(Zcold) = lim My, xot/m' (18'2)
Z~> Zeona

The existence of the discontinuity can now be established. Substitution of equation (18-2)
and of the similar equation for the approach to diffusion equilibrium at the hot boundary
into equation (1-4) gives

lim AM-YdT/dZ) = lim 3[H,G,/m,— lim H G,|/m,]
Z—>

Z—> Zdow Z~>Zeold @

= zHa(Zcold) hm (mzx xoc/m) - hm m—l z Hoc xtx)' (18.3)
o Z—>®© o

Z~>Za

Now, according to § 15, the specific enthalpy is constant when all Lewis numbers are unity:

lim 5 H,5,/m = 3 H,(Zya) lim (x,/m). (18-4)

Z—>0 o L —> Licold
Substitution of equations (18:1,4) into (18-3) gives
0< lim AMYAT/dZ) =3 H(Z,)[ lim (x,/m)— lim (x,/m)]. (18-5)

Z—> Zdna Z—> Zeold Z—> Zdna

This proves that the Hirschfelder-Curtiss model requires a discontinuity in the mole fractions
whose magnitude is determined by the temperature gradient assumed. However, because

47 Vor. 259. A.
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the rates are so many orders of magnitude smaller at the lower temperature of the flame
holder, it has been possible to choose (d77/dZ) to satisfy two criteria:
(a) dT/dZ is sufficiently large that for a fixed interval

t/
(s ] about foya f (dG, /dz) dt
tcola

makes no significant contribution to the total integral. Thus the solutions are comparatively
insensitive to variations of (d7/dZ),,,, over an interval which excludes a neighbourhood
of zero.

(b) The fractional discontinuity of the #, is less than a part per hundred thousand (and
therefore, less than the usual probable integration error in G,).

APPENDIX A. MATHEMATICAL INSTABILITY OF THE FLAME EQUATIONS

First it will be shown that the linear equations derived from (1-1-4) by including only
the first order terms in the Taylor series of the F;(u) at Z = Z; are mathematically unstable
in Henrici’s (1961) sense. Then evidence will be presented for the conclusion that the non-
linear equations have the same instability. Let

[dy/dZ] = A[y]+ [F°]
where

[y] is the n-rowed one-column matrix whose jth element is y;(Z) ;
A'is the matrix such that 43 — (3F;(8)];)uze; LA

[£] is the one-column matrix whose jth element is the constant, F;[u(Z)];
and

yj (ZO) = 0. J
If the set of flame variables has been chosen to be functionally independent, 4 will be non-
singular. In this case the translation

[y] = [¥Y]—A~1[F7] (A2)
gives the form [dY/dZ] = [dy/dZ] = A[Y]. (A3)
For simplicity consider the case in which the nth order characteristic equation

|4i—adi] =0 (Ad)

has 7 simple non-vanishing roots. In this case any (z—1) x (r—1) submatrix of (4 —al) will
be non-singular and the general solution of equation (A 3) with n arbitrary constants can be
written in the form

[¥Y(2)] = U(Z) [N]

where
U(Z) is the matrix whose jth column [U;(Z)] = [U; exp{;(£—Z,)}], where (A5)
[U;] is the unit eigen vector for the root, a;;
[N] is an arbitrary n-rowed one-column matrix.

Since a standard theorem (Smirnov 1961) states that U(Z,) is non-singular whenever all
the roots of equation (A4) are distinct, [N] is determined uniquely by the boundary

conditions A-[F] = [Y(Z,)] = U(Z,) [N]. (A 6)
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In the cases which have been examined, the characteristic equation for the linearization
(A 3) has had L negative roots:

@, <@, ;< ..<a; <0, L being the number of linearly independent G;. (A7)

Whenever there is a species whose mole fraction approximately follows the kinetic steady
state far more closely than the mole fractions of other species do, |«,| has been orders of
magnitude greater than |¢,|. The argument is now parallel to that for examples considered
by Fox & Mitchell (1957). Suppose that initial conditions (A 6) define a solution corre-
sponding to exp [«,(Z—Z,)]. Then any arbitrarily small alteration in these initial conditions
which introduces a component corresponding to exp [a,(Z—Z,)] will give a solution which
diverges drastically from the first as Z decreases from Z,. For this reason, Henrici (1961) calls
such systems mathematically unstable. Since the characteristic equation (A 4) in general
also has positive roots of very different magnitude, the system is also mathematically unstable
for integration as Z increases from Z;, == 0. Since any numerical solution must introduce
alterations in values, the desired solution to the linear system (A 3) can be dominated by the
other components.

The following arguments, based on numerical studies, support the conclusion that the
original non-linear system (1-1-4) has the same sort of mathematical instability as its
linearization (A 3). First, in the cases which have been studied, it has been found that after
all negative roots except «, have been removed by applying the kinetic steady-state approxi-
mation to one or two x,, then the resulting equations have been integrated without difficulty
in the direction of decreasing Z. Secondly, integrations of the complete equation system
have been performed using the Runge—Kutta method which has been shown to be stable
for sufficiently small interval sizes (Rutishauser, 1952). When the interval was sufficiently
small to satisfy the restriction due to subtraction [cf. equation (3-1)], solutions which satisfy
the central difference approximations to the derivatives at each point to 5 or 6 digits (or more)
could be constructed. Nevertheless, alteration of the last of the eight digits carried caused
positive (negative) divergence to switch to negative (positive) divergence and loss of the
solution which fits the cold boundary conditions. Moreover, a switch from the Runge-
Kutta to a second method of integration altered the starting values required to follow the
central solution.

AppEnDIX B. CONCEPTS OF ‘NUMERICAL DETERMINANCY’ AND ‘CORRECTION TERMS’
Consider a compound function H[w(7)] subject to the equation
Hw(T), T]=0; W={wp,...,w,). (B1)
By the implicit function theorem, if H has continuous first order partial derivatives at wW°,
and if (0H|w,,)e=+ 0, then equation (B 1) defines a compound function w,,(u) such that
ow,,| ou; = — (0H|ow;)[(9H [ow,,), (B2)
u=w;, 1<j< (m=—1).
In this case, the limiting absolute value for the relative change in w,, induced by a change
in w;, for all other wy, fixed, is

AH{M ,,,,, =df (B3)

j.me

lim —
AWj->0

| (2H] 2w )

‘ (w, /au

47-2
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The implicit equation (B1) will be said to be a numerically determinate equation for
w,, < s or fewer digits for each w;, 1 <j < (m—1), determine an s digit value for w,,. Thus

equation (B1) is a numerically determinate implicit equation for w,, < for
¢

each j, d (B4)

0
‘i, m <

¢: a constant of the order of unity.
Furthermore, a variable w; will be said to enter as a correction term « the limit as
Aw;. — 0 of the relative change in w,, to the relative change in w is less than unity. Thus:

w;- enters (B1) as a correction term < d? , < 1. (B5)

AprpPENDIX C. EQUATIONS FOR THE FIRST APPROXIMATION, £ = 1

This discussion will use symbols defined in §4. It is convenient to use power scries
coeflicients rather than derivatives since the formulae for products are simpler. Let

F be any differentiable variable or expression; (G1)

(F),, = (m!)~1 (d™F/d¢m), the mth order power series coeflicient;

m

C[F]: a symbol used to designate a convenient computational unit which occurs as a
coeflicient of . C[F';y, w] will be used when an explicit statement that C[F'] is a function
of y and w is desired.

The equation for R?is used as an implicit equation for x, which is numerically determinate
since x; occurs as a factor of R¢ and R? depends only weakly on x, through the relation,
>x; = 1. R} enters as a correction term since by hypothesis the method is to be applied for
J

sufficiently small deviations from the kinetic steady state. In computational units, the
equation for x ({x}¥~1, R", 1) is

N
SC[X,; ] X,—R' = 0; X, =L,
v J=1

where (C2)

C[X,; t] is the linear combination of specific rates which multiplies X, when

R¢, RY are rewritten in terms of the lincarly independent mole fractions
in {x}".

The linear equation (C6) for G({x}",{G}"1, (R}),,?) is derived by the following steps:
(a) differentiate (C 2) and multiply by M~1(d¢/dZ) to obtain (C 3); (b) rewrite A “1F, and
M~ (dt/dZ) as functions of the elements of {x}¥, {G}* in equations (C 4, 5); (¢) regroup the
terms:

N
CIM~1F, | M-VE, - C[M-\(d¢dZ); (), 1, (R2),] M- (d¢/dZ) — 0,  (C3a)
=1 ) -

J

) N
C[M'F,] =3 C[X,]y; gx;wﬂ—ain (C3h)

CLMHdtdZ)] = — (Ry), + 2 (CT X)), X (C3¢)
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L N

MF, =3 % Ci[G,x,; t] G, %, (C4a)
=0 ¢=0

(/[G, x,] : the linear combinations of the (D) ~! which occur as coefficients of

(G, x,) when F,_ is written as a function of the elements of {x}¥, {G}* (C 45)
Gy=x,=1 (for symmetry). (C4o)
L
MFp =213 4(4)G, (C5a)
=0

where

Z,(¢) is the linear combination of the H; which arises when M~1A(d¢/dZ) is

written as a function of the elements of {G}7, (Cs5b)
L
> C[G,]G, =0, (Céa)
=0

€161 = 3 CIME,) S O16,8,] 2, CLM(AAZ); G, (R 10 4. (Co0)

Equation (C 6) has been found to be numerically determinate for G, and it is reasonable to
expect this to be generally true since: (1) (C2) can be expected to be numerically determi-
nate for F, as x,is a factor of R¢; (2) it follows from the form of the diffusion equations (1-3)
that F, is numerically determinate for G,.

Differentiation of (C 6) and multiplication by M~ F,gives the second order differential
equation in R?:

[M-1F) éo (CIG,]), G+ M- qéo C[G,m, Ry = 0. (c7)

To minimize subtraction in (C7), each R% should be written as a combination of R? plus
net rates for elementary reactions. For example, three reactions have been used for an O,
flame: (1) O3+ M<=0,+0+M; (2) O3+0 «20,; (4) 20+M = O,+ M. In the neigh-
bourhood of 7, ,, where R}, < Ry, it is desirable to write R} = —Rp —2(R,+R,).

On the basis of the following argument it is plausible to expect that in general (R?),, (R?),
will enter (C 6, 7) as correction terms: (1) the shape of R?(¢) can be expected to be invariant
with d? (as it is for the flame of part II) ; (2) since (df - 0) — (R? - 0), step (1) implies that
(R2),, (R2)y > 0.

ApPENDIX D1. SOLUTION OF THE DIFFERENTIAL EQUATIONS

No method which uses higher derivatives (as the Taylor series does) should be used since
the relative error due to the approximation (4-3) in general increases with the order of the
derivative. In most cases, a stable explicit method of numerical integration such as one of
the Runge-Kutta methods has the following advantages: (1) it is self-starting; (2) the
interval size can be readily increased and then decreased again as 7" decreases; (3) all of
the G; and ¥;, j + s, which occur in equation (4-4) are known. The major disadvantage of
the Runge-Kutta procedure is that the necessity of solving equations (4-40,¢) at each
substitution level can require tenfold or more computing time than is needed for a stable
implicit method. The latter methods have, however, the following disadvantages: (1) they

47-3


http://rsta.royalsocietypublishing.org/

A

%

y
A

/\
A \
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P9

a
,/”\\ A
o )

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

384 E. S. CAMPBELL, F. J. HEINEN AND L. M. SCHALIT

require a separate program to start the integration; (2) it is difficult to decrease the interval
size when required; (3) as 7 increases, these methods can require even more time than a
Runge—Kutta. Studies have shown that the increase in time is due to: (a) the necessity for
simultaneously solving for all x;, G; which are all unknown; () the increased coupling
between the algebraic and differential equations. A method developed by Nordsieck (1962)
should be tried in future studies since it appears to possess advantages of both methods:
(1) it is self-starting; (2) it allows for automatic change of interval size; (3) it is stable;
(4) although it is an implicit method it can be used with only two substitutions per step.

ApPENDIX D2. SOLUTION OF THE ALGEBRAIC EQUATIONS

If the set (4-4b,¢) is quasilinear (as it was for the flame of part II), it can be solved
iteratively by solving the linearized approximation, substituting the result in the non-linear
terms and repeating the process until no further change occurs. When this is not the case,
a procedure similar to the one used for the O, flame can be applied as follows: (a) use a
numerical integration or other suitable extrapolation formula to predict the values for
x,, G, (R?);,] < g; (b) tostart a cycle, set a counter p = 0 and compute in order of increasing
Js (R?);,7 < p. Repeat the cycle over j until a consistent set of values is obtained ; (¢) if p < g,
replace p by (p-+1), calculate (R?),,, and then repeat (b) until all change is within pre-
assigned error bounds.

ApPENDIX E. TECHNIQUES FOR NUMERICAL DIFFERENTIATION

Extensive calculations by Schalit (1961) and Heinen (1962) have led to the following
conclusions about the methods which should be used in differentiating R? over [7", T"],
where 7}, > 7" > T >T,,,.

max.

(1) Construction of second derivatives. Numerical approximations for second derivatives can
be constructed in the two following ways: (1) form a finite difference approximation
beginning with the second difference at the point; (2) first form finite difference approxima-
tions to first derivatives at an equally spaced sequence of points and then form the finite
difference approximation to the derivative of thesc first derivatives. The second procedure
is preferable since it will use function values at points spaced over a wider interval and will,
in general, involve less of a loss in accuracy due to subtraction of significant digits.

(2) Use of forward and backward difference formulae. These formulae introduce such a serious
error growth when they are used at successive £ levels that they should be used for as few
points as possible at the beginning and end of the range of integration.

(8) Use of central difference formulae. The error growth with repeated use at successive
k levels is less rapid than for forward or backward difference formulae. However, as £ is
increased, the increasing error in higher differences works down to second differences. The
maximum £ before this occurs depends upon d7. In one case, it occurred at £ = 4. This error
build-up limits the number of £ levels which can be run. Nevertheless, the central-difference
formulae must be used to obtain data for points not covered by (2) or (4).

(4) Use of least squares polynomials. In any finite difference method, the derivative at each
T is calculated using a different set of data points. This results in a lack of smoothness in
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higher differences in the input for the second of the sequence of levels of successive approxi-
mation. This initial error and the error growth can be reduced by using a least squares
polynomial of higher order for a wider range of data points and computing the derivatives
for several points from the same polynomial. A least squares fit with polynomials of higher
order (orders up to 11 were used) can be successful only if the polynomials are orthogonal
with respect to the set of input points (Forsythe, 1957). Successful use requires attention to
the following points:

(4a) Use of a scaling function. Let
P(Z) be a least squares polynomial; 1
= |f(Z;)—P(Z))|/|f(Z;)|, the relative error at Z,.|

IfE; and E; are to make the same contribution to a least squares sum which depends upon
absolute error, then

(E1)

\f(Z) 51 = |/ (Z) Bxl® = Ej| By, = | f(Z) [/ (Z))]- (E2)
Since relative rather than absolute errors are of interest, it is desirable to reduce the
exponent range of the input function values. It has been found that the variation in
exponent of R? can be reduced satisfactorily by using an idealized relative deviation,
df o = R?/R? ,, where R? is an idealized rate of production which can be computed using
the results from the kinetic steady-state hypothesis and unit Lewis numbers. For a three-
component flame, this is particularly advantageous since this makes all mole fractions
explicit functions of temperature (cf. §§ 10, 15). Since d7 can be fitted by a least squares
polynomial, P,, which can be differentiated numerically and since dR? j/d can be calculated
from its analytic formula, dR?/d¢ can be computed as

dRr/dt = P.(dRP /) + R? ,(dP./dt). (E3)

Note that it is desirable to scale the independent variable by using a reduced temperature
such as ¢ or 7 of (82, 3).

(4b) Use of overlapping intervals. Suppose that the input function values have been scaled
so that they are all of the same magnitude and that they are distributed with an approxi-
mately constant density. Then the error in the derivative can be an order of magnitude
greater for a point near either end of the input data range than for a point near the centre.
Heuristically, this is clear from the observation that: (¢) the data points do not specify the
behaviour of the function outside the range of input points; (b) the least squares criterion
will minimize the error in fitting those points near the centre of the range. Thus, if a separate
polynomial were determined for each of a sequence of intervals

([T, To), [15: T, [T, 1), ),
there could be much greater error and lack of smoothness at the junction points, 75,75, ....
This can be reduced by fitting polynomials to data on overlapping intervals as follows. Let
the jth polynomial be fitted to data points covering an interval [T}, 74] where T},, < T%.
Then the jth polynomial should be used to compute over an interval, [7% T7], where

Ti<Ti<Ti,<T/<Tf TI=Ti,. (E 4)
(4¢) Assembly of the polynomial. The standard theorem that the error is a non-increasing
function of the order of the least squares polynomial will not hold if non-orthogonal
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polynomials are used on computing machines which operate with truncated numbers.
Moreover, if orthogonal polynomials are used, they must not be reassembled for economy
in evaluating function values or derivatives. Otherwise, the subtraction involved in
calculating the coefficients of the single reassembled polynomial can lead to an increase in
numerical error as the order of the least squares approximation is increased.

AprprENDIX F. NUMERICAL VALUES OF THE PARAMETERS
The following values have been selected :

a=AE/(RT,,.) = Q/(RT,..) = 4-588298828. (This is based on a related value used in
previous studies of this system. There is no particular reason for choosing exactly this
number. However, it is in a reasonable range, since if 7}, = 3000°K, AE/R ~ 1-4 x 10*
degrees.)

b= Q/(CT,,.) == 0:9176597656. (This is the value # = a(R/C), for C = 5R.)
Lola =~ — 090823 4038. (This corresponds to d7'/dZ == 0 [cf. §18].)

Lewis numbers for ‘heavy’ free radicals: 0,0 = 1, 85, = %, 050 = %.

Lewis numbers for ‘light’ free radicals: d,, = 1, §5, = 20/3, 0pc = 10.

Although the foregoing Lewis numbers would not be expected for species of the same
mass, it seemed desirable to ignore this inconsistency in order to test the significance of
binary diffusion coefficients using this simple equation system.

AprPENDIX G. EXISTENCE OF A SINGLE INTERNAL MAXIMUM IN ¥, FOR
AN INTERMEDIATE SPECIES, §

In general, the rate of production of s will be a sum of bimolecular rates:

P 3 Bhwi Bl —Slutn (+sk+s). G1)
Js
Therefore, the derivative of R? can be written as a sum
dRS/dé = Z R(J »Cims Chm = Chnt0+0
\(J } (G 2)
Cliomy = (dfu wld) [ s Cp = (dx;/dt) [x;;  Cp = (dx,/de)[x;.

Since each RY; ;y > 0, dR?/d¢ can be negative only if some Cy; y is.

The following steps show that while C; ;, can be expected to be everywhere positive if
both j and £ are product molecules, it should be positive at lower and negative at higher
temperatures whenever at least one of the species is a fuel molecule or an intermediate which
has a single internal maximum in x,; and for which R? is of the same order as R¢ at higher
temperatures.

(a) Typical free-radical production reactions have a sufficiently large positive activation
energy that CY; ; is everywhere positive and decreases with increasing ¢ approximately

as 1% Ciory = (G0 [f oy = (AL iy RT) (Toax [ T)- (G3)

(6) In those cases which have been studied, x;(¢) for either a product or a fuel molecule
is slowly varying and over most of the flame is of the order of the average value

[xj(tcold) (t = 0)]/feora = [x (t=0)— (tcold)]
~ {j = product: +x;(t = 0); 7 = fuel: —x;(toa)} (G4)
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(¢) Consider the relative magnitudes. If AE ~ 15Kcal., 7,,,, ~ 3009, and 7, had a
very low value of 1000°K, then CY; ;, would decrease from -25 at 7, to +8 at 7;,,. . For
any fuel molecule, x;(7},,.) should be at most of the order of 0-01 so that C; would decrease
from about —1 at 7,4, to —100 at 7},

(d) Consider an intermediate with a single internal maximum for which Rf and R¢ are
of the same order in the high temperature region (e.g. Br for the reaction

H,+Br=HBr+H).

Then the following steps show that C; can be expected to be O(C;) for the fuel molecule(s)
involved in the dominant reaction(s) forming s: (a) dR¢/d¢is O(dRE/d¢) ; (b) use an expression
for dR¢/d¢t analogous to (G 2); (¢) observe that the specific rates for consumption reactions
vary rather slowly with ¢ and that the important high temperature reactions will involve s
and product molecules.

Therefore, RF can be expected to have a single 1nternal maximum provided the dominant
reactions involve either a fuel molecule o7 such an intermediate s. Furthermore, even when
the Br, molecule in the H,~Br, flame had a maximum in xg,, at about 600°A due to the
more rapid diffusion of the very light molecule, H, (Campbell 1957), Cy,, and Cy, were not
large enough in this low temperature region to alter the conclusions. It is plausible to
expect this to be true in general.

Whenever R? has a single internal maximum, then in the limit as the kinetic parameters
are varied to cause an approach to the kinetic steady state, the following steps show that x;
can also be expected to have a single internal maximum. (@) In general, any terms in R¢
with 3 as a factor will be dominated by other terms so that the steady-state equation (2-1)
is essentially a linear or quadratic equation in x, in which the constant term, R?, has a single
internal maximum. (b) The root of a linear or quadratic equation is a monotone function
of the constant. (¢) The coefficients of x; and of 2 can be expected to vary with temperature
much more slowly than the constant.

The conclusion can be extended as the kinetic parameters are varied to cause increasing
deviations from the kinetic steady state since: (a) any net rate of production due to chemical
reactions in a time independent flame must be exactly balanced by a net rate due to diffusion
and overall gas-flow; () § 11 shows that overall gas-flow appears to be rather insensitive to
specific rates of reactions for intermediates; (¢) diffusion reduces, but does not eliminate
gradients.

AppENDIX H. THE IMPORTANCE OF THE VISCOSITY TERM IN THE
ENERGY BALANCE EQUATION

In order to estimate the size of the viscosity term, it is convenient to use equation (15-2)

wobEn gy W) (R () o (A)) o (2)
dz ""p(dz “ o ™\r71\az) T rT2\dZ ”(dz]
dlnP dlnT dInm
dz

=

(H1)

Now the following argument suggests that (dlnP/dZ) will be small compared with
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(dIn 77/dZ). The pressure difference across the flame front can be estimated from the fact
that dv/dZ ~ 0 at the flame holder. Thus, it follows from equation (15-3) that

P(Z)~ lim P — M2[p(Z,) — lim p™]. (H2)

If, for example, P(Z,) ~1latm, 7T(Z,)~300°A, 7., ~2500°A; Mx~1lgem?s7},

c

m ~ 30 g/mole, then P(Z,)-— lim P ~ 6 x103dynes/cm?. Moreover, experimental mea-
YA ]

surements on some hydrocarbon flames at one atmosphere pressure (Lewis & von Elbe,
1951, p. 342) have given a similar pressure variation of the order of 0-1-1 mmHg. (See also
Hirschfelder & Curtiss 1949, Appendix B.)

Furthermore, since

dinmjdz  TIVIE (7)o mdy -
dinT/dZ ~ m d7/dZ (7 20 de (H3)

max.

it follows that dInm/dZ should be at most of the order of dIn 7'/dZ. Therefore the absolute
value of the viscosity term should be at most of the order of

a0 2dT
(3’7 PK) szf -

( M? ) cal a7

' dv'
Ay )Ny —| ~ - - E PN el
[<3’7“‘)”dzg" L18x1052T) degCg 31 TF) gz (HY)

For dilute gases « can be ignored. I'or an order of magnitude comparison with Ad77/dZ
it should be sufficient to use the relation for pure monatomic gases (Hirschfelder ¢ al. 1954,

p.534): A~ {(15/4)1-98m~1cal degC-1g=1}y. (H35)

Even for M ~ 1 gcm~2s71, the viscosity term is only of the order of at most a fraction of a
per cent of Ad7/dZ for typical temperatures and densities.
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